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mate agreement with the gallium arsenide band struc
ture calculated by Bassani and Yoshimine,3 but yields 
the result that Pi lies below r i 5 . This appears to be in 
better agreement with experimental evidence, such as 
piezoresistance and magnetoresistance measurements, 
which seem to indicate that the bottom of the conduc-

3 F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963). 

I. INTRODUCTION 

THE space and energy distribution of particles re
leased into a field-free medium by a high-energy 

localized source provides a means of studying the inter
action of the particles with the medium. A recent ex
ample of this technique is to be found in a paper by 
Bartelink, Moll, and Meyer dealing with the emission 
of hot electrons from shallow p—n junctions in silicon.1 

In the experiments reported in the BMM paper, elec
trons in the silicon are accelerated by an electric field and 
are then allowed to diffuse through a field-free region in 
which they may either lose energy or—in effect—be 
absorbed. Other examples may be found among the 
problems faced by the designers and users of nuclear 
reactors.2 Here, the particles of interest are neutrons, 
and not surprisingly, a substantial part of neutron 
transport theory is concerned with the calculation of 

1 D. J. Bartelink, J. L. Moll, and N. I. Meyer, Phys. Rev. 130, 
972 (1963). The authors and this reference will be denoted BMM. 

2 R. L. Murray, Nuclear Reactor Physics (Prentice Hall, Inc., 
Englewood Cliffs, New Jersey, 1957). 

tion band is a t IY The band gap was found to be of the 
same order of magnitude as that found experimentally. 

I wish to express my gratitude to Professor E. Brown 
for his guidance and encouragement throughout the 
completion of this work. I further wish to acknowledge 
that most of the computations were performed at the 
Rensselaer Polytechnic Institute Computer Laboratory. 

just this space- and energy-dependent distribution 
function.3 

The similarities between the hot electron problem of 
the BMM experiment and the neutron diffusion problem 
are so great that it was virtually inevitable that BMM 
should have employed one of the most useful of the 
approximations developed by the neutron transport 
workers—the Fermi age theory2-4—in the analysis of 
their experiments. The hot electron problem is, however, 
sufficiently simpler than the neutron diffusion problem 
that it is possible to obtain much exact information 
about the distribution without making the age theory 
approximation. This is important because, although the 
age theory is known to be valid in the limit of infinitesi
mal absorption and infinitesimal energy loss per colli
sion, its validity for the finite absorptions and finite 

3 B , Davison, Neutron Transport Theory (Clarendon Press, 
Oxford, 1957). 

4 S. Glasstone and M. C. Edlund, The Elements of Nuclear Re
actor Theory (D. Van Nostrand and Company, Inc., Princeton, 
New Jersey, 1952). 
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The space and energy distribution of electrons released into a field-free semiconductor provides a means of 
studying the interaction of the electrons with the material, as experiments by Bartelink, Moll, and Meyer 
have shown. In the presence of finite absorption, or large energy losses per collision, the conventional methods 
of solving the Boltzmann equation governing the distribution function fail to give reliable results. We have 
found that a considerable amount of information may be obtained from the Boltzmann equation itself with
out a spherical harmonic expansion by studying its Laplace transform with respect to energy. In particular, 
we obtain an analytic expression for the exponential attenuation length which reduces to the BMM ex
pression in the limit of small absorption and small energy loss. We obtain expressions for the average energy 
loss and average spread of the distribution, both of which increase linearly with distance, and for the total 
intensity of the distribution, which decreases exponentially with the distance through which the electrons 
must diffuse. This form of variation is independent of the energy distribution of the source of hot electrons. 
Therefore, if the energy distribution of electrons is measured at two different distances from the same source, 
the rate at which the average energy, for example, decreases with distance may be determined. This rate, 
being independent of the source distribution, is a characteristic of the medium, as is the BMM attenuation 
length. These two quantities together provide sufficient information to determine the mean free path for 
optical phonon emission and the mean free path for impact ionization. Measuring the energy distribution of 
the electrons in the medium can be done by measuring the distribution of electrons emitted into the vacuum 
provided that the angular distribution of the particles is known. This angular distribution may be approxi
mated from knowledge of the Laplace transform. The effect of this analysis on the interpretation of the 
BMM experiments is to suggest that the mean free path for impact ionization in silicon may be closer to 
300 A than to 200 A. 
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energy losses of physical interest in the hot electron 
problem has not been adequately examined. 

The simplicity of the hot electron problem resides in 
the primitive nature of the model used to describe the 
transport of the hot electrons in semiconductors. In this 
model which has been used by many workers,5-7 elec
tron-electron interaction is neglected and the interaction 
of the electron with the medium is characterized by 
three parameters: lr the mean free path for the electrons 
to cause emission of an optical phonon, ST the energy of 
that phonon, and U the mean free path for the electron 
to cause impact ionization. The process of phonon 
emission is treated as an isotropic scattering event in 
which the electron loses the energy Sr] the process of 
ionization is treated as a scattering in which the electron 
loses so much energy that it is removed from the dis
tribution in the energy range of interest, i.e., ionization 
is treated as an absorption. 

The purpose of the present work is to extract a certain 
amount of exact information from the model without 
making the age approximation. In particular, the at
tenuation length and the low-order spectral moments 
(to be defined subsequently) are quantities which may be 
calculated analytically. From these moments, one can 
compute the total intensity, average energy, and aver
age spread of the distribution. These three parameters 
are especially useful in describing the distribution for the 
following reason: The change in these quantities pro
duced by altering the thickness of material through 
which the electrons must travel will turn out to be com
pletely independent of the mechanism by which the 
electrons are heated. Hence, if the emerging spectrum is 
measured for two different thicknesses of material, one 
can, with no knowledge of threshold for ionization or the 
field distribution which accelerated the electrons, obtain 
three numbers which depend on k, lr, and Sr only. These 
three numbers, and the exponential attenuation length 
L0 (a fourth function of liy lr, and Sr) are more than 
adequate to determine k and lr. Moreover, these three 
parameters are very nearly sufficient, as will be shown, 
to describe the entire shape of the spectrum. 

The second section of this paper is meant to be a 
mathematical introduction and outline. In that section 
will be found the definition of the attenuation length, 
spectral moments, average energy, and average spread. 
These quantities are all related to the Laplace transform 
of the collision density, which is the key element in the 
calculation scheme to follow* The mathematics used in 
that section will be simple, general, and will contain 
ideas developed in the succeeding sections. The attenua
tion length is calculated in Sec. III. Spectral moments 
and averages are calculated in Sec. IV by two methods, 
one which is useful provided that the source is not too 
near, and the other, by the age theory approximation. 

5 P. A. Wolff, Phys. Rev. 95, 1415 (1954). 
e W. Shockley, Solid State Electron. 2, 35 (1961). 
7 J. L. Moll and R. Van Overstraeten, Solid State Electron. 6,147 

(1963). 

Results are presented in the form of graphs; the analytic 
expressions being plotted will be found in the appendix. 

Although it is possible to invert the Laplace trans
formation when the age approximation is used, inversion 
of the transform of the exact collision density has not 
been accomplished. Because there is some advantage in 
having a function to contemplate rather than some 
numbers (the moments) which describe it, we introduce 
in Sec. II a simple trial function which, with parameters 
adjusted to give the age approximate moments, accu
rately reproduces the age approximate collision density. 
This same function, with parameters adjusted to give 
the exact moments, should reproduce the exact collision 
density as well. Use of this trial function makes possible 
a calculation of the angular distribution and current in 
Sec. V. The current turns out to be related to the density 
gradient in a way which closely resembles the ordinary 
Fick's law of diffusion but with differences which arise 
because of the finite absorption and the finite energy loss. 

The main reason for interest in the angular distribu
tion is its relation to the current of particles actually 
emitted from the medium, the quantity studied in the 
BMM experiments. A calculation of the emitted current 
concludes Sec. V. Finally, Sec. VI contains a discussion 
of the effect of this work on the interpretation of the 
BMM experiments. 

II. GENERAL FEATURES OF THE DISTRIBUTION 

The exponential attentuation of a flux of particles is 
a characteristic of the bulk properties of the material 
and does not depend on the details of the process by 
which the particles are introduced or removed from the 
material through which they must pass. For this reason, 
the exponential attenuation length can be calculated 
by solving an infinite medium problem, a much simpler 
task than is solving one in which surface conditions must 
be specified. The appropriate infinite medium problem 
is, of course, one in which the distribution depends on a 
single spatial coordinate, say, on x only. The source of 
particles may then be placed on the plane x=0. 

The details of the distribution near a boundary far 
from the source may be of interest. Suppose that the 
medium is field free and semi-infinite, the boundary 
boundary being at x=Z, and suppose that all particles 
which reach the boundary are emitted. This boundary 
condition may be shown to be very nearly equivalent to 
demanding that the particle density go to zero along 
some plane x=Z/, where L and L' are within one mean 
free path of each other.8 The distribution whose density 
vanishes along the plane x~L' can always be con
structed from the infinite medium distribution by the 
method of images; that is, one subtracts from the infinite 
medium distribution with source at %—0 another infinite 
medium distribution whose source is at x=2U. Since 

8 P. M. Morse and H. Feshbach, Methods of Mathematical 
Physics (McGraw-Hill Book Company, Inc., New York, 1953). 
See their Eq. (2.4.34) and their Fig. 2.20. 
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each density is symmetric about its own source, the 
difference vanishes halfway between the two sources, at 
x—L'.h. related method of images can also be used if the 
boundary at L is totally reflecting. Thus, the physics of 
the semi-infinite medium problem is largely contained 
in the solution to the infinite medium problem. 

Suppose now that there is a spherically symmetric 
source of monoenergetic electrons of energy Eo located 
along the plane x=0. The resulting distribution function 
will be denoted f(x,p; Eo), where p is the momentum. 
I t is convenient to work, not with / , but with a collision 
density Q(x,E; Eo), equal to the rate at which electrons 
of energy E suffer collisions in a unit volume at x. If the 
mean free time for collisions of all types is denoted by 
r(p), then the collision density can be found by inte
grating f/r over all momenta whose energy E(p) is 
equal to E. 

Q(x,E; Eo) = [dp8£E-E(p)-]f(x,PjEo)/T(p). (2.1) 

If the electrons at x=0 are released, not just at energy 
Eo but in a distributed source S(E0), then the collision 
density M at the plane x will be given by integrating Q 
over the source 

•.00 

M(x,E) = / Q(x,E; Eo)dE0S(E0). (2.2) 
Jo 

There is no way that an electron can increase its energy 
in the model described in Sec. I. Hence, an electron 
released at energy E0 can contribute to a collision den
sity at energy E only if E<E0, i.e., Q vanishes if E>E0. 
Because the parameters of the model are independent of 
energy, the probability that an electron loses an energy 
U=Eo—E [suffers (Eo—E)/Sr collisions] in diffusing a 
distance x will depend on the energy loss E0—E rather 
than on E and E0 separately. From this it follows that 

Q(x,E; Eo) = q(x} EQ-E)^q(x,U), (2.3a) 

q(x,U) = 0 if U<0, (2.3b) 

M(x,E) = / q(x, Eo-E)dEoS(Eo). (2.4) 

so that 

This relation between source spectrum S and collision 
density M has some very useful consequences. The first 
is that an exponential source with temperature kTe 

S(Eo) = exp(-E0/kTe) 

gives rise to an exponential collision density 

M(x,E) = <rE/kT' / q(x,U)e-u/kT'dU. (2.5) 

This exponential collision density has the same tempera
ture as the source and a spatial dependence (the integral 

above) which is just the Laplace transform of q, 

qs(x)^ [ q(x,U)e~sUdU, (2.6) 

with the transform variable s set equal to the reciprocal 
temperature. I t will turn out that this integral has a 
spatial dependence exp(—x/L0), and this then defines 
the attenuation length L0. 

The second consequence is the relationship between 
the total source strength S0 for an arbitrary source dis
tribution S(EQ), and the total collision density M0(x) 
along the plane x. The total source strength and collision 
density are 

S 0 = / S(Eo)dE0, 

Jo 
Mo(x)= / M{x,E)dE. 

(2.7a) 

(2.7b) 

Integrating (2.4) over E, reversing the order of integra
tion and substituting U—Eo—E as the variable of inte
gration gives the following relation between them: 

.oo /,oo 

Afo(*)= / dE q(x,E0-E)S(E0)dE0 

where 
--S0Q0(x), 

Qo(x)= / q(x,U)dU. 

(2.8) 

(2.9) 

The quantities So, M0, and Q0 are special examples of 
spectral moments which will be defined in general by 

Sn^ / S(Eo)EQ
ndEoy (2.10a) 

Mn(x)= / M(x,E)EndE, (2.10b) 

Qn(x)= / q(x,U)UndU. (2.10c) 
Jo 

These moments are useful quantities for describing 
the distributions S(E0) and M(x,E). For instance, the 
average energy (Eo) of the source electrons and the 
average energy (E(x)) at which electrons collide on the 
plane at x are given by 

(E0)= S(Eo)EodE0/ S(Eo)dE0 = SJS0, 

(2.11a) 

(E(x))= M(x,E)EdE/ M(x,E)dE 

--M1{x)/Mo{x). (2.11b) 
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The average square deviation of the source from its 
average and the average square deviation of the collision 
density from its average are also expressible in terms 
of the moments 

Bs^iEo^-iE^Si/So-iSi/So)*, (2.12a) 

dM
2(x)^(E2(x))-(E(x))2 

= M2(x)/MQ(x)-[M1(x)/Mo(x)y. (2.12b) 

The relation between the average energy of the source 
and of the collision density at x may we obtained by 
multiplying Eq. (2.4) by E, integrating over all E and 
dividing the result by Eq. (2.8). The relationship 
resulting is 

(E(x))=(Eo)-(U(x)), (2.13a) 

<tf(*)) = ei(*) /eo(*) . (2.13b) 

The quantity (U(x)) defined by Eq. (2.13b) is obviously 
the average energy loss of those electrons which collide 
at the plane x. Therefore, Eq. (2.13a) states simply 
that the average energy at which electrons collide on 
the plane x is equal to this average energy of the source 
minus thier average energy loss in traversing the region 
from source to collision. This result might have appeared 
intuitively obvious: not so intuitive perhaps is the fact 
that the square deviations are also additive. One may 
verify, by multiplying Eq. (2.4) by E2 and integrating, 
that 

8M2(X) = 8S
2+8Q

2(X), (2.14a) 

h2(x)^Q2(x)/QQ(x)-lQ1(x)/Qo(x)J. (2.14b) 

That is, any spread in the source distribution is aug
mented by adding the spread caused by transport of the 
electrons from source to collision. 

The three parameters M0(x), (E(x)), and bM
2(x) con

tain quite a bit of information about the distribution 
M(x,E) and hence can be used to characterize the dis
tribution as well as can, say, the energy and magnitude 
of the peak of the distribution. These parameters have 
in addition the considerable advantage of a very simple 
spatial dependence. This will be confirmed in detail in 
later sections. I t will turn out that at distances large 
compared to one mean free paths, 

Qo(x) = A exp(-Bx/l), (2.15a) 

(U(x))= Sr(C+Dx/l), (2.15b) 

8Q
2(x) = Sr

2(F+Gx/l), (2.15c) 

where / is the total mean free path and the six constants 
A, B, C, D, F, G depend only on r, the ratio of mean 
free paths 

r=li/lr. (2.16) 

Therefore, if the parameters 50 , (EQ), and 8s2 describing 
an arbitrary source are given, then the parameters de
scribing the collision density will be, using (2.8), (2.13), 

(2.14), and (2.15) 

M0(X) = SQA exp(-Bx/l), (2.17a) 

(E(x))^= (Eo)- Sr(C+Dx/l), (2.17b) 

8M
2(x) = 5s2+Sr

2(F+Gx/l). (2.17c) 

If, on the other hand, the source parameters are not 
known, then observation of the collision density at two 
values of x, say X\ and #2> and computation of the 
parameters from the observed distribution gives 

B/l= (x2-x1)-
1 ln[Jf 0(*o)/M0(*i)], (2.18a) 

DSr/l=(x2-x1)-
ll(E(x0))-(E(xl))'], (2.18b) 

G S r V ^ ^ - ^ i ) - 1 : ^ 2 ^ ) - ^ 2 ^ ) ] , (2.18c) 

i.e., three numbers which are independent of the source 
distribution S(E0), and which may be used to determine 
U and lr. 

The three moments Q0y Qh and Q2 which alone are 
needed for calculation of the six constants in Eq. (2.15) 
may be obtained directly from the Laplace transform 
(2.6) without ever performing the inversion. One need 
only differentiate the transform n times with respect to 
s and then set s equal to zero 

/ d\n r™ 
limf J qs(x)= / q(x,U)UndU = Qn(x). (2.19) 
*-°\ dsj Jo 

Thus, the transform qs(x) supplies both the attenuation 
length LQ and the six constants. 

The reason for all this emphasis on quantities which 
can be calculated from the Laplace transform qs(x) 
without knowing the distribution q(x,U) is, of course, 
that we are unable to calculate q(x,U) even though we 
do know the transform qs(x) exactly. Our knowledge of 
qs(x) arises in an interesting way: In the first section of 
this paper we stressed the analogy between the hot elec
tron problem and the neutron diffusion problem; that 
analogy appears once again, for now, it turns out that 
the transform qs(x) is exactly the density function in 
monoenergetic neutron diffusion theory.3'9 This density 
function is well known and so we can again draw on 
some of the exact results of neutron transport theory to 
solve the hot electron problem. 

Our inability to calculate q(x,U) horn qs(x) is not as 
serious a difficulty as one might anticipate because quite 
a bit is already known about the qualitative behavior of 
q(x,U). The qualitative information about q(x,U) is the 
following: 

(a) I t is nonnegative because of its definition. 
(b) I t probably has a single maximum, because of the 

physical arguments presented so clearly by BMM. 
(c) Its dependence on U at large U will be exponen

tially decreasing because each collision which increases 

9 K. M. Case, F. de Hoffman, and G. Placzek, Introduction to the 
Theory of Neutron Diffusion (U. S. Government Printing Office, 
Washington, D. C , 1953). 
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FIG. 1. Comparison of age distribution with its 
trial function approximant. 

U by a constant amount 8r decreases the electron popu
lation by a constant fraction Co, the probability that the 
electron survives a collision. 

In addition to the qualitative information, the param
eters Qo, (U) and 8Q

2 provide three pieces of quantitative 
information about q(x,U) namely, its integral over U, 
its average U and its spread about that average. Taken 
together, the quantitative and qualitative information 
leave little freedom in the shape of q(x, U) even though 
a variety of functional forms might successfully simulate 
this single shape. 

A simple trial function which is consistent with the 
qualitative information is 

qn{x,U) = a(U- U0)
n expl-y(U- U0)l, U> U0 

= 0, U<U0. (2.20) 

Other trial functions come to mind but this one has the 
advantage that, for integer n, the moments can be 
easily calculated 

Qm(x)^ f dUqn(x,U)U™. 

Roughly speaking, one may think of the parameter a as 
adjusting the normalization, the parameter Z70 as shift
ing the distribution so as to adjust the average energy, 
and the parameters n and y as adjusting the width of 
the distribution. One finds that 

Qo(x) = anl/yn+1, 

U^(U(x))^Q1/Q0=Uo+(n+l)/y, (2.21) 
d2^8Q2(x)^Q2/Qo_(Qi/Qo)2=(n+1)/y2t 

The quantities on the left of (2.21) are known. Hence 
Eq. (2.21) may be solved for a, U0, and y. 

7 = [ > + l ) / 5 2 ] 1 / 2 , 
U0=U-t(n+l)8*y», 
a= (Q0/nl)Z(n+l)/82yn+»/2. 

By choosing a, y, and U0 in this way, the trial function 
and the exact function agree qualitatively and, to the 
extent of our knowledge of the exact function, 
quantitatively. 

Although the parameters on the left of (2.22) are 
highly dependent on the value chosen for n, the trial 
function itself is rather insensitive. A simple way to 
demonstrate this is to calculate the magnitude and 
position of the peak of the trial function. This calcula
tion may be found in Appendix C. Also to be found in 
Appendix C are the considerations of the analytic prop
erties of the Laplace transform of qn(x,U) which lead 
to a unique choice of n. 

It is interesting to compare the shape of the trial 
function with the function which it is supposed to 
simulate. The age theory calculation described in Ap
pendix B leads to an explicit q(x,U) for which the trial 
function parameters can be calculated and for which 
the trial function can be evaluated. A comparison of the 
explicit q(x,U) and of the trial function approximation 
to it appears as Fig. 1. There is no inherent reason that 
the same trial function calculated using the parameters 
(2.22) should fail to simulate the true collision density 
as well. 

Thus, even without knowing how to invert the 
Laplace transform, we have obtained a function which 
probably provides a useful substitute for the real q(x,U). 
The utility of this substitute will be more apparent in 
Sec. V when we use this collision density to calculate the 
angular distribution near the boundary of a semi-infinite 
medium so as to be able to apply the ideas just outlined 
to the analysis of the BMM experiments. 

III. THE ATTENUATION LENGTH 

In this section, we shall display the Boltzmann equa
tion corresponding to the model of Sec. I, take the 
Laplace transform and, setting s equal to the reciprocal 
temperature, we shall calculate the attenuation length. 
The resulting expression will be shown, under the condi
tions for which the age approximation is valid, to reduce 
to the expression given by BMM. 

The Boltzmann equation governing f(x,p,E<y) of 
Sec. II is 

r d l~ i 
Vx—| /(s,p,E0) 

L dx r(p)J 

+ d(x)8[E0-E(p)l/ [dp^ZEo-EWn. (3.1) 

(2.22) 

Here, r(p) is the momentum-dependent mean free time 
for scattering of all types so that f/r is the rate at which 
scattering removes electrons from the element drdp. The 
collision recovery function F(p <— p') describes the rate 
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The Laplace transform of Eq. (3.6) is 
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at which particles with momentum p' are scattered back 
into this element. The last term in (3.1) is the source of 
monoenergetic electrons of energy E0, located on the 
plane x=0. 

The model described in Sec. I corresponds to the 
following choices: 

E(p) = p2/2my (3.2a) 

Y=dE(p)/dp=p/m, (3.2b) 

l/r = p/ml, (3.2c) 

F(p <- p') = (4*p*)-Kp'/mlr)*(p-p*), (3.2d) 

P*=Z(p')2-2m8rJ
/i. (3.2e) 

Here, m is the mass of the electron, p is the magnitude 
of p and the mean free path I is 

l/l=l/k+l/lr (3.2f) 

As a result of these choices, the collision density Q of 
Eq. (2.1) is 

Q(x,E; E0) = (p*/l) <Kif(x,v,E0), (3.3a) 

dp=p2dpdQ, 

p=(2mE)m. 

where 
(3.3b) 

(3.3c) 

The momentum dependence of / will be a dependence 
only on the scalar p and on fi, the cosine of the angle 
between x and p. It will be convenient to define 

z=x/l, (3.4a) 

U=E0-E, (3.4b) 

g(z,U,„) = (4^V/)/(*,p; £0) , (3.4c) 

so that 
1 /-1 

Q(x,E;Et) = - / 
2J-! 

dixg(z,V», (3.5) 

while g satisfies the equation derived from (3.1) 

d 

Co f1 

=— / dp'giz, U-8r,». 
2 7_i 

CQ=l/lr* 

8(z)8(U) 
) + , (3.6a) 

/ 
(3.6b) 

The quantity c0 is the probability that an electron 
survives a given collision, i.e., emits a phonon, and 
ranges from zero to one. The ratio r~li/lr is, of course, 

r=c0/(l-c0). (3.7) 

The dependence on E and E0 separately has disappeared 
completely from Eq. (3.6), and hence, one may write 

1 r1 

Q(x,E;E0) = q(z,U) = - dH(z,U^). (3.8) 
2 y_i 

/ d \ c r1 8(z) 
U - + l t o ) = - <*/*'*.(*,/*')+ , (3.9a) 
\ dz I 2J_i / 

where 

f.(M)= / g(z,U,»)e-°vdU, 

CZ=C(S)~CQ exp(—sSr). 

Also, the transform of Eq. (3.8) is 

gs(z) 
2Ai 

dvgs(z,n). 

(3.9b) 

(3.9c) 

(3.9d) 

Note that the function gs(z) appearing in (3.9d) is just 
the Laplace transform of the collision density—the 
function qs(x) which plays the central role—expressed 
in terms of z=x/l. 

For the purpose of calculating the exponential at
tenuation length, the hot electron distribution may be 
examined far from the source. Postulating that the 
spatial dependence will be exponential, one writes10 

gs(z,tx) = h(n)exp(-Kz) (3.10) 

inserts this into (3.9a), ignores the source and obtains 

(-/df+DAGO 
c r1 

2 7_i 
(3.11) 

Since the right-hand side of (3.11) is a constant inde
pendent of n, the left-hand side is also a constant which 
may be set equal to unity. This means that 

or 
( - M * + I ) * G 0 = I 

AfoMi-MiO-1. (3.12) 

Inserting this solution back into both sides of (3.11) 
allows the integration to be carried out with the result 

l ^ / i O t a n h - 1 ^ . (3.13) 

Using (3.10) and (3.12) to evaluate (3.9d) gives 

gs(z) = exp(-Kx/l)(l/K) tanh-1^ 

so that the exponential attenuation length is 

U=l/K, 

where K is the solution of (3.13) obtained, according to 
Eq. (2.5), by setting s=\/kTe. Summarizing these 
results, 

*.(*,ju) = (1-M^)-1 e x p ( - i ^ ) , (3.14a) 

L0=l/K, (3.14b) 

K/c=ta,nlr1K) (3.14c) 

C=CQ exp(— Sr/kTe). (3.14d) 
10 This method of solution appears in Ref. 8, p. 1616 and Ref. 3, 

p. 53. 
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TABLE I. Numerical values of K(c). 
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FIG. 2. The function K(c): (X/c) = tanlrtfiT. 

The function K(c) denned by (3.14c) is well known in 
neutron transport work.9 A numerical solution to (3.14c) 
may be obtained by two or three iterations of the 
equation 

K=teDh(K/c) 

starting from an initial choice of K=(3 — 3c)1/2. The 
values in Table I and graph (Fig. 2) have been taken 
from Ref. 9. Equation (3.14) is our exact expression for 
the exponential attenuation length. 

The age theory approximation results when: (a) the 
distribution function is expanded in spherical harmonics 
and all but the first two are dropped, and; (b) the energy 
loss Sr is treated as infinitesimal. This was the technique 
used by BMM. To make contact with BMM, consider 
the spherical harmonics expansion of the angular de
pendence of (3.14a) namely, 

(l-vKr^ZgiWPiin). (3.15) 

A short calculation indicates that g2/go is proportional 
to K2. Hence, the condition for the validity of the 
neglect of g2 and higher terms is that K2 be very small. 
Assuming that this is the case, one may expand (3.14c) 

K/c**K+K*/3 

and solving for K, K2~3(l — c)/c. The smallness of K2 

then implies that c is very close to unity, so that one has 

K2~3(l-c). (3.16) 

Treating Sr as small allows us to expand (3.14d) to 
lowest order to obtain 

c=c0(l-Sr/kTe). (3.17) 

Combining (3.14b), (3.16), and (3.17) gives 

Lo*=P/3Zl-c0(l-8r/kTe)l 

or, using definitions (3.2f), (3.6b), and (3.7), 

Lo2=lli/3Zl+r8r/kTe~], (3.18) 

which is the formula given by BMM. Thus, the BMM 
formula which was obtained using age theory is indeed 
an approximation to the exact result (3.14). The ap-

c 

0.0 
0.1 
0.2 
0.3 
0.4 

K 

1.0000 
1.0000 
0.9999 
0.9974 
0.9856 

c 

0.5 
0.6 
0.8 
0.7 
0.9 

K 

0.9575 
0.9073 
0.8286 
0.7104 
0.5254 

c 

0.92 
0.94 
0.96 
0.98 
0.99 
1.00 

K 

0.4740 
0.4140 
0.3408 
0.2430 
0.1725 
0.0000 

proximation however, is valid only when Co is close to 
unity and Sr is small. 

IV. SPECTRAL MOMENTS AND AVERAGES 

We now recognize that Eq. (3.9a) is precisely the 
Boltzmann equation which arises in monoenergetic 
neutron transport theory when neutrons suffer elastic 
collisions after being emitted from a plane source.3'9 In 
the neutron work, the quantity c is the probability that 
the neutron survives the collision. In the hot electron 
problem, Eq. (3.9c) indicates that c is indeed proportional 
to CQ, the probability that the electron survives collision 
but here, c depends on the transform variable s as well. 
This is the only difference between the two problems 
and even this difference does not enter into the solution 
of Eq. (3.9a). We need only quote the solution to 
Eq. (3.9a) for z>0.11 

1 r1 

2 Jo 
- (dK/dc) exp(-Kz), (4.1a) 

where 

^ ( c / ^ t a n h - 1 ^ , (4.1b) 

g(c,M) = [ ( l - < * tanh-V) 2 +(7rW2) 2 ] - 1 . (4.1c) 

This solution (4.1a) consists of two terms, an integral 
and a term which, with different normalization, ap-

E 
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'/ 
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C 

FIG. 3. The distribution constant A as a function of c. 

J1 Reference 9, pp. 71 and 107. 
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TABLE II. The six constants as given by Eq. (A4). 

c 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.92 
0.94 
0.96 
0.98 
0.99 

lA 

0.0045 
0.0583 
0.1894 
0.3822 
0.6315 
0.9594 
1.444 
2.400 

2.761 
3.271 
4.120 
5.976 
8.556 

B 

1.0000 
0.9974 
0.9856 
0.9575 
0.9073 
0.8286 
0.7104 
0.5254 

0.4740 
0.4140 
0.3408 
0.2430 
0.1725 

C 

8.014 
4.832 
3.479 
2.878 
2.679 
2.809 
3.447 
5.806 

7.033 
9.039 

13.24 
25.72 
50.71 

D 

0.00090 
0.0175 
0.0757 
0.1911 
0.3789 
0.6716 
1.155 
2.160 

2.540 
3.080 
3.955 
5.857 
8.471 

F 

-9.8889 
-5.928 
-3.535 
-1.851 
-0.2307 

2.256 
8.686 

43.91 

70.83 
129.5 
299.0 

1224 
4950 

G 

0.00812 
0.1021 
0.3393 
0.7412 
1.394 
2.558 
5.136 

14.70 

20.40 
31.08 • 
56.32 

156.5 
438.0 

peared in the preceding section in which the presence 
of the source at z=0 was discounted. The second term 
on the right of Eq. (4.1a) will be designated the asymp
totic solution because, as in the last section, it persists 
even at large distances from the source. The presence 
of the integral in (4.1a) is connected with the proximity 
of the source. 

The exponential attenuation of the integral can be 
seen to be like exp(—z) while the attenuation of the 
asymptotic term is like exp(—Kz) with K<\. At 
sufficiently large distance from the source, the integral 
becomes negligible with respect to the asymptotic term 
and may be discarded. The minimum distance at which 
this discard is permissible depends on c(s), or since we 
shall soon set s=0, on Co. The reader is referred to Ref. 9 
for a fuller discussion of this point. 

The moments may now be computed by differentiat
ing the asymptotic solution with respect to s and then 
setting s equal to zero as in Eq. (2.19). In this connec
tion, it is useful to note that the s dependence arises 
only through the dependence of c(s) on s. Therefore, 
using Eq. (3.9c) 

(4.2) 
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FIG. 4. The distribution constant B as a function of c. 
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FIG. 5. The distribution constant C as a function of c. 

The differentiations, construction of the average energy 
loss (U(x)) by Eq. (2.13b) and the construction of the 
average spread 5Q2(X) by Eq. (2.14b) are routine matters 
which offer no difficulty, and may be found in the 
Appendix A. The six constants A • • • G of Eq. (2.15) may 
be identified immediately and as promised, they depend 
only on the ratio of mean free paths. It is convenient to 
express them as functions of C0. Table II lists the six 
constants and Figs. 3 through 8 display the same 
information in graphic form. 

Also appearing in Figs. 3 through 8 are the values of 
the same six constants as calculated by age theory. The 
outlines of the age theory calculation may be found in 

TABLE III. The six constants in the age approximation. 

c 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.92 
0.94 
0.96 
0.98 
0.99 

lA 

0.9682 
1.035 
1.118 
1.225 
1.369 
1.581 
1.936 
2.739 

3.062 
3.536 
4.333 
6.124 
8.660 

B 

1.459 
1.449 
1.342 
1.225 
1.095 
0.9487 
0.7746 
0.5477 

0.4899 
0.4240 
0.3464 
0.2449 
0.1732 

C 

0.1250 
0.2143 
0.333 
0.5000 
0.7500 
1.167 
2.000 
4.500 

5.750 
7.833 

12.00 
24.50 
49.50 

D 

0.1936 
0.3105 
0.4472 
0.6124 
0.8216 
1.107 
1.549 
2.465 

2.817 
3.323 
4.157 
6.001 
8.574 

F 

0.03125 
0.0918 
0.2222 
0.5000 
1.125 
2.722 
8.000 

40.50 

66.13 
122.7 
288.0 

1200 
4901 

G 

0.0242 
0.0665 
0.1491 
0.3062 
0.6162 
1.291 
3.098 

11.09 

16.20 
26.03 

498.8 
147.0 
424.4 
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Appendix B, but the results of that calculation, the six 
constants, are listed in Table III. 

V. ANGULAR DEPENDENCE AND CURRENT 

In this section, the angular dependence of the dis
tribution function g(z,U,n) will be calculated using the 
"last collision" method. The idea is that electrons leave 
their last (most recent before the observation) collision 
isotropically and proceed in straight line motion until 
they are observed as part of the distribution g(z,U,n). 
Therefore, the number that are traveling in any given 
direction may be computed by counting the number 
of nearby collisions along a line in the direction of ob
servation. Those electrons which are observed with 
energy loss U must have had, prior to the collision, an 
energy loss U—Sr, and hence, the collision density 
q(z', U—&r) is all that is needed to calculate g(z,U,n). 

Perhaps the easiest way to derive the last collision 
formula is to insert Eq. (3.8) into (3.6a) to obtain 

Md/dz)+l3g^U7fx) = Coq(z} U- Sr)+8(z)8(U)/l 

and to integrate this equation, ignoring the source, to 
obtain 

g(«: 
Co C* 

q(z',U-Sr)(T^*')/'tdz', M > 0 . (5.1) 

In ascribing physical meaning to (5.1), note that the 
factor c0 is the probability that the electron actually 

survived the last collision and the exponential is the 
probability that the electron survived the transport 
from z' to z without intervening collision, a distance of 
(z—z')/jji mean free paths for an electron whose direction 
cosine with the z direction is y. Hence, Eq. (5.1) is the 
last collision formula. 

Suppose now that the medium is semi-infinite, termi
nating at z=L. Then the collision density to be used in 
(5.1) is the one appropriate to this bounded problem. If 
the boundary condition is complete emission, then the 
method of images may be used to construct a collision 
density which vanishes at z=Lf, and (5.1) becomes 

g(z,U,v) = - f Lq(z',U-Sr] 

-q(2L'-z', U-SJle-^-^^dz', (5.2) 

where the collision densities appearing in the integrand 
are the infinite medium solutions. 

Because the infinite medium solution is not readily 
available, there is every reason for using the trial func
tion approximation of Sec. II and Appendix C for the 
purpose of evaluating the integral. Recall that the z de
pendence of the trial function entered only through the 
parameters Q0, U, and 52, and recall that the dependence 
on Q0 was multiplicative. Thus the trial function could 
have been written in the form 

qn(z,U) = Q0(z)FlU(z),8Kz),U-]. (5.3) 
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FIG. 7. The distribution constant F as a function of c. 
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Since the exponential in the integrand of Eq. (5.2) acts 
to limit the range of z' to a small neighborhood near z, 
it is appropriate to consider how the parameters QQ, U, 
and 52 vary over this limited range. Reference to Sec. IV 
and a guess at any reasonable values of c0, Sr, and z 
indicate that U and 52 are sluggish in their z dependence 
and hence, for the purpose of evaluating (5.2) they may 
be held fixed at their values at zf = z. That is, for the 
evaluation of (5.2), it is quite valid to set 

qn(z',U)=:Qo(zf)F\:U(z' = z), «*(*'=*), V]. (5.4) 

The parameter Q0 had the form (Appendix C) 

Q0(z') = Aexp(-KQz'), (5.5) 

where K0 is the K of Eq. (4.1b) evaluated at c=Co. Using 
(5.5) and (5.4) and (5.2) allows the integration to be 
performed. The result is 

g(«,l7,M) = co[(l-MK:o)-1<?fe U-Sr) 
-(l+lxK^q^L'-ZiU-Sr)-]. (5.6) 

Deep within the medium, the second term will be 
negligible in comparison to the first and the current,12 

J(z,U) = — d<p d»g(z,U,p)v, (5.7) 
Air Jo J-i 

will be 

J=k0q(z, U-SJKo-'tttmh-iKo-Ko] 

or, using (4.1b) 

J=l(l-co)/Ko2Mz, U-Sr)lKo. (5.8) 
The approximation (5.4) indicates that K0q=—dq/dz. 
Hence 

j(z9U) = -Ddq(z, U- Sr)/dz, (5.9a) 

t>=lU\-c*)/Kf"\. (5.9b) 

The form of (5.9) is quite similar to the equation 
which relates g0 to gi in the age approximation, or to 
Fick's law of diffusion which relates current to density 
gradient. Only under the conditions of validity of the 
age approximation, can one ignore the Sr energy differ
ence between the two sides of (5.9a) and, because c0~ 1, 
give D its limiting value of 1/3. This will, however, re
cover exactly the usual Fick's law of diffusion. Many of 
the results of the age approximation may be brought 
much closer to the exact solution merely by using (5.9) 
instead of the analogous equation in the bare age 
method. 

The angular distribution at the edge of the medium 
is of interest. According to Ref. 8 

Z/=Z+0.7104. 

Hence, at the edge of the medium where z=L, Eq. (5.6) 
12 The factor of velocity inherent in the definition of current 

has, in Eq. (5.7) et seq. been absorbed in the dp/dE — v~~l which 
converts the current per momentum dp to a current per energy dE. 

FIG. 8. The distribution constant G as a function of c. 

may be evaluated, using (5.5) and (5.4) as 

g(L,U7fM)=:Coq(L,U-8r)Mn) /*>0, (5.10a) 

Xexp(-1.4208#o) (5.10b) 

as the angular distribution of outgoing particles just 
inside the boundary. The rate at which those particles 
whose trajectory lies within an angle 0o=cos~"Vo 0f the 
normal will cross this boundary is 

/(AIO)=— / d<pj dpg(z,U,n)n 
47T J 0 J n 

= k#(L,U-Sr)JKM, (5.Ha) 

1 r /l-/xo#o\ , 1 
JKM = In )-tf0(l-/*o) 

2Ko2L \ 1-Ko ) J 

1 r /l+juo#o\ T 
6T-i.«oaKo i n ( J + 2 S : 0 ( 1 . / i 0 ) . 

2iT0
2 L \ 1+K0 I J 

(5.11b) 

Finally, there is one other boundary condition—this 
one of more relevance to the BMM experiment—which 
may be easily treated by the method of images. This is 
the condition that all electrons incident on the interface 
are reflected back into the medium. Assuming for sim-
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FIG. 9. Relationship between cQ and / imposed by BMM 
measurement of L0 and kTe. 

plicity that the vacuum-silicon interface acts as a perfect 
reflector, this means that 

g(L,U,») = g(L,U,-ri. (5.12) 

To satisfy this boundary condition, one adds to the 
infinite medium solution with source at z=0 another 
infinite medium solution with source at z=2L. The 
effect of adding, rather than subtracting, is to change 
into a plus sign the minus sign separating the two colli
sion densities in Eqs. (5.2), (6), (10b), and ( l ib ) . 
Putting the source at 2L deletes the exponential from 
these last two equations. Thus, under conditions of 
specular reflection at the boundary, the angular dis
tribution at the boundary is 

g(L,U,») = w(L, U- Sr)FK(n), (5.13a) 

F X ( M ) = ( 1 - ^ O ) - 1 + ( 1 + M ^ O ) - 1 , (5.13b) 

while the rate at which electrons within the cone angle 
0O impinge on the boundary is 

/(MO) = c0lq(L, U- Sr)JKM , (5.14a) 

1 /1-KQW\ 
JKM = l n ( — : . (5.14b) 

2KQ
2 \ 1-iTo2 / 

VI. INTERPRETATION OF THE BMM EXPERIMENTS 

The BMM paper reports two experiments. In the 
first, the electrons were observed to be emitted in a 
distribution which had a temperature kTe. By removing 
measured amounts of silicon from the path of the elec
trons and noting the resulting increase in current, BMM 
were able to obtain a value for the attenuation length 
LQ. The two quantities L0 and kTe impose, via Eq. (3.14) 
a relationship between c0 and / which is plotted as Fig. 9. 
Each solid line in the figure corresponds to a different 
pair of values for the data. The central line corresponds 
to the values L 0 =45 A, kTe=0.5 eV, which BMM take 
as their best determination. The other two lines corre

spond to the limits of error BMM set on their 
observations. 

The dotted lines, shown for comparison, give the rela
tion between c0 and / which one would have inferred 
from the age approximation result, Eq. (3.18). The exact 
calculation gives a value of / which tends rapidly to the 
value L0 as Co is decreased. This happens because, as 
the probability that the electron survives a collision 
drops well below unity, the only electrons which survive 
are those which do not collide at all. At large distance 
from the source, these travel directly away from the 
source and attenuate at a rate governed by the total 
mean free path—regardless of any considerations regard
ing the energy dependence of the distribution. Although 
the age approximation is asymptotic to the exact result 
as Co approaches unity, it leads one to expect values of 
I greater than the exact ones at all values of c0. There
fore, we may expect that the BMM value for / will be 
larger than the true value, whatever c0 turns out to 
be.13-14 

The second BMM experiment was designed to supply 
a second relationship between / and c0 so that c0 and / 
can be determined uniquely. The experiment was a 
measurement of the spectral shape of the emerging 
electrons. 

This second experiment is difficult to interpret be
cause the spectral shape does depend on the details of 
the electric field in the junction, on the existence of a 
threshold energy below which ionization does not occur, 
on the energy dependence of the ionization cross section 
near the threshold and on the reflection of the electrons 
by the potential step as the silicon-vacuum interface. 
The troublesome part of the calculation of the spectral 
shape is the calculation of the source spectrum S(E0) 
whose parameters, S0, (E0), and 8S

2 occur throughout 
Sec. I I . Ideally, the Boltzmann equation should be 
solved without making the age approximation, but in
cluding the presence of a field, an ionization threshold 
and the behavior of the ionization cross section near 
threshold; this would be exceedingly difficult to do. 
There are, moreover, too many uncertainties in the 
actual field distribution and actual cross sections for us 
to even consider performing such a calculation at the 
present time. BMM have argued that the effect of all 
these uncertainties (and the effect of the age approxima
tion itself) will be small. They may well be correct to so 
argue; we just cannot be certain. 

We can be certain, however, that those electrons 
which are emitted must maintain a high energy while in 
the field-free region and that therefore, in that region, 
they never sample the cross sections near threshold. 
This means that a model which neglects the existence 
of the threshold region does apply to the field-free region. 

13 This tendency of the age approximation to overestimate the 
mean free path seems to be general. An example of this in a problem 
where there is an electric field may be constructed by comparing 
the results (Fig. 2) of Ref. 5 with those (Fig. 1) of Ref. 14. 

14 G. A. Baraff, Phys. Rev. 133, A26 (1964). 
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One consequence of that model is, as we have seen, that 
two spectral measurements can determine the three 
constants B, D, G of Eq. (2.18) even without knowledge 
of the source spectrum or of the field distribution which 
produced it. If the two spectral measurements were to 
be made, then there would be absolutely no reason to 
attempt the calculation of the source spectrum or to 
worry about ionization thresholds. 

Because the two spectral measurements are not yet 
available, it may be of some interest to assume that the 
various BMM arguments are correct and to try to learn 
what effect the age approximation alone has on the 
interpretation of the spectral shape measurement. 

BMM found (using the age approximation) that the 
whole effect of diffusion through the neutral layer, a 
field-free region, may be included by considering the 
field region to be increased in width by the thickness of 
the neutral layer. This result may be considered from 
the converse point of view, that the whole effect of the 
field region preceding the neutral layer may be included 
by considering the neutral layer to be augmented in 
width by the thickness of the field region. The significant 
energy variable in this case is the energy loss U. Thus, 
the BMM finding means that the spectrum M(x,E) may 
be calculated as though it were q(x,E) with the result 
[Eq. (2.15)] that 

MQ(x) = A exp(—Bx/l), 

(U(x))=Sr(c+dX/l), 

6MK*)=SrKF+Gx/t)9 

(6.1a) 

(6.1b) 

(6.1c) 

with x being the distance from the start of the field region 
to the plane of observation. The results of this equation 
agree with the BMM results as given in BMM Fig. 2 
when the constants A-G calculated by the age approxi
mation are used.15 

We are going to use Eq. (6.1), with the constants 
calculated exactly, as the description of the distribution 
to be compared with the BMM calculation. This is not 
the best possible description of the distribution at the 
end of the field-free region but it is the best we can do 
without recalculating the source distribution. 

I t seems very likely to us that the change in the dis
tribution occasioned by using the exact constants in 
(6.1) rather than the age constants is a step in the right 
direction but one which does not go far enough. 

The rough approximation just described for the treat
ment of the field region calls for a similar rough approxi
mation for the treatment of the effect of the silicon-
vacuum interface. At this interface, a potential step of 
energy \f/ acts to keep electrons in the silicon. An electron 
whose energy is &L will be reflected by this potential 

15 This comparison is made by using (6.1) for the parameters to 
calculate the peak of the distribution via Eq. (CI), x must be 
kept large enough to make the effect of C and F negligible. The 
converse of the BMM argument breaks down at small x because 
the field sweeps low-energy electrons away from the origin. 
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FIG. 10. Values of c0 and / compatible with 
both BMM experiments. 

unless its trajectory lies within an angle 0O of the normal 
to barrier; 

COS0 O ==MO=(* /SI ) 1 / 2 . (6.2) 

The rough approximation is to assume that the cone 
angle 0O is small enough so that most of the electrons 
incident on the barrier will be reflected and that this 
reflection is elastic and specular. The distribution func
tion near the barrier will then be given by Eq. (5.13) and 
the emitted current will be given by Eq. (5.14). 

The BMM data is the current of emitted electron as 
a function of electronic energy—i.e., the spectral shape 
of emitted electrons. Our expression (5.14) may be 
evaluated using the moments of Eq. (6.1) in the approxi
mate inversion of Sec. I I to provide a prediction of what 
that emitted spectrum should be. The spectrum calcu
lated in this way depends on cQ and on z=L/l rather 
than on c0 and on / directly. If L were known, this would 
be no problem, but, as BMM point out, the distance L 
is rendered uncertain precisely because of uncertainties 
about the field distribution and ionization threshold. All 
that we can do is to choose cQ and z to fit the spectrum 
and to assign reasonable values to L so as to obtain the 
corresponding pair of values for c0 and / which fit the 
spectrum. 

The criterion we have chosen to measure the accuracy 
of the fit is the energy of the peak of the emitted distribu
tion. Setting this energy (loss) at 1.5 eV (the observed 
value of the peak) gives, for each assignment of L, / as 
a function of c0. Figure 10 depicts the family of I versus 
Co curves resulting. Each curve is labeled by the value of 
L assigned. A portion of Fig. 9 has been redrawn here, 
so that the I versus Co curves determined by the attenua
tion length L0 appear superposed on those determined 
by fitting the peak of the distribution. 

I t turns out that the value c0=0.86 fits the amplitude 
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FIG. 11. Comparison of calculated and observed spectra. 

of the peak. For the value of I corresponding, one has a 
range of choices consistent with the range of accuracy 
of the determination of L0. On the one hand, one may-
assign a value to L (choosing perhaps the BMM guess 
of L=900 A) and read off Fig. 10 the value of / corre
sponding (in this case 1= 42 A) or one may assign a value 
to L0 (choosing perhaps the BMM best estimate of 
Z 0 =45 A) and read off Fig. 10 the value of / correspond
ing (in this case 1=34: A). The two spectrum measure
ment we have suggested would go far towards resolving 
the ambiguity here. 

In Fig. 11, the spectrum calculated for 2=21.8, 
Co=0.86 is compared with the data from Bartelink's 
thesis.16 This datum differs from that in BMM because 
the latter datum was arbitrarily shifted by 0.1 eV to 
fit the BMM theory. Any comments about the accuracy 
of fit between theory and experiment here would be 
premature if the two spectrum measurements are going 
to be made. I t is our hope that they will soon be. 

The tentative choice 1=38 A and c0 = 0.86 leads to 
values 

/ r = / A o = 4 4 A, 

li=l/(l-c0) = 27OAJ 

r=li/lr = 6.1. 

(6.3a) 

(6.3b) 

(6.3c) 

16 D. J. Bartelink, Technical Report No. 1654-2, Solid State 
Electronics Laboratory, Stanford University, Stanford, Cali
fornia (unpublished), 
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APPENDIX A: DIFFERENTIATION OF 
THE TRANSFORM 

The asymptotic part of the solution given by Eq. 
(4.1) is 

lqs(z)=-(dK/dc) txp(-Kz), 

where 

and 

so that 

(K/c^tanlrW 

c=c 0 exp(—S8 r ) , 

(Ala) 

(Alb) 

(Ale) 

(A2a) (-d/dS) = cSr(d/dc). 

I t is useful to define 

K0=K(c0) = Co t a n h - 1 ^ , (A2b) 

Kn^(d/dco)nK0. (A2c) 

The differentiations (2.19) are easily performed and the 
result, suppressing the subscript zero on K0 and c0 are 

(A3a) 

(A3b) IQ^z)^- SrdKz-zK!2) exp(-Kz). 

IQ2(Z)=- gr*(c*K1h
2-3zc2K1K2 

-zcK^+c^+c2^) exp(-Kz). (A3c) 

Hence, using (2.13b) and (2.14b), the averages are 

(U(z))= SrcKi/Ki- &rcKxz, (A3d) 

SQK*)= SrKc*K*/Ki+cKi/K1-c*K2*/K1*) 

-SrKctKt+cKJz. (A3e) 

Comparison of (A3) with (2.15) then gives 

A = -K!/l9 (A4a) 

B = K0, (A4b) 

C=c,K2/Ku (A4c) 

D=-c0Kly (A4d) 

F=co*Ks/K1+CoKz/K1- M V i Q 2 , (A4e) 

G^-COSKZ-COKL (A4f) 

The derivatives Kn appearing here may be evaluated 
most readily by differentiating Eq. (A2b) 

dK K(l-K2) 
K±=—=— z , (ASa) 

do 0 ( l - i m - c 2 ] 
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TABLE IV. Derivatives of K(c). 

-Ki -K2 -Kt 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.92 
0.94 
0.96 
0.98 
0.99 

0.0045 
0.0584 
0.1894 
0.3822 
0.6315 
0.9594 
1.444 
2.400 

2.761 
3.276 
4.120 
5.976 
8.556 

0.1805 
0.9396 
1.647 
2.200 
2.820 
3.850 
6.220 

15.48 

21.10 
31.69 
56.81 

156.8 
438.3 

5.216 
8.159 
6.024 
5.434 
7.490 

14.37 
38.62 

212.8 

369.4 
753.1 

2061 
11574 
65 216 

K2 

dKx 2c2(l-c)K(l-K2) 

dc [c(l-K2)-c2J 
(ASb) 

dK2 
Kz= = 2c*K(l-K2) 

dc 

X-
[3c{\-c)2+±{l-c)K2+(3c-k)K*~] 

[c{\~K2)-c2J 
(ASc) 

These derivatives are evaluated as functions of c0 in 
Table IV. 

APPENDIX B: AGE THEORY 

Equation (3.6) governing g(z,U,fi) may be treated 
within the framework of the age theory approximation. 
One writes 

g(z,U,v) = giiz,U)+ng{z,U), (Bla) 

g(z, U- Sr, ») = g(z,U,»)-8rdg/dU. (Bib) 

Insert (Bl) into (3.6) and then 

(a) Integrate the result over /*. 
(b) Multiply the result by fi and then integrate over /x. 

A pair of coupled equations result and these may be 
combined into the single equation for g0, namely 

r l d2 d 1 8(z)*(U) 
(l-co)-c08r— \go(z,U)+ = 0 . (B2) 

U dz2 dUA I 

The Laplace transform of (B2) with respect to U is 

r l d2 

•(1 — Co+CoSrS) 
Sdz2 

gs(z) = 

gs(z)+ = 0 , 
i 

g0(z,U) exp(-sU)dU, 

and the solution is 

gs(z) = (3/2Kl)exp(-K\z\)., 

K2=3tl-c(s)l, 

c(s) = c0(l — sSr). 

(B3a) 

(B3b) 

(B4a) 

(B4b) 

(B4c) 

Applying the age approximation to (3.8) shows that 
go(z,U) is itself the collision density. Hence, the trans
form qs(z) is 

qs(z) = gs(z) = (3/2Kl) exp(-Kz). (B5) 

This is the function which yields the attenuation length 
by setting s— l/kTe, and the moments by the differentia
tion indicated by Eq. (2.19). The attenuation length L0 

is given by 

L0*=P/K*=P/3[l-c(l/kTe)'], 

= fl</3[l+r«r/*rj, 
(B6) 

which is identical to Eq. (3.18). In performing the 
differentiations, the observation that the only s depend
ence enters (B5) through K leads to 

d dK d / 

ds ds dK \ 

3co&r\ d 

2K JdK 

Hence, the results of the differentiation and algebra are 

Qo(z) = (3/2lKo) exp(-Koz), (B7a) 

Qx{z) = (PcSr/UKoXKo-i+zKo-1) exp(-KQz), (B7b) 

Q2(z) = (27c2gr
2/8lKo)(3K<r4+3Ko-3z+Ko-2z2) 

Xexp(—K&) i 

K0
2=3(l-Co), 

and the parameters are 

(U(z)) = ZcoSr/2(l-Co)yi+K&), 

8Q
2(z) = lcoSr/2(l-Com2+K0z). 

Comparison of Eqs. (B7), (B8) with Eq. (2.20) yields 

(B7c) 

(B7d) 

(B8a) 

IA = [3/4(1 -c0)J
/2, (B9a) 

B=l3(l-c0)J
/2, (B9b) 

C = c 0 / 2 ( l - c o ) , (B9c) 

D=[3^o 2 /4( l -Co)] 1 / 2 , (B9d) 

F=Zco/(l-c0)J/21 (B9e) 

G=[3co 4 /16( l - C o ) 3 ] 1 / 2 . (B9f) 

The numerical evaluation of (B9) is given in Table I I I 
and Figs. 2-7. 

APPENDIX C: AN APPROXIMATE INVERSION 

The fact that the shape of the trial function Eq. (2.20) 
is fairly insensitive to the value of n chosen may be 
demonstrated most easily by calculating the energy and 
magnitude of the peak of the distribution. The maxi
mum value of qn(z,U) occurs at 

UmaK=UQ+n/y 
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and the value of q at its maximum is 

g»(*, tf m«) = QoL(n+ l)/n8*y<*gn, 

gn==nn+h~n/nl. 

However, using (2.22), one has 

umax=u-Z8*/(n+W* (CD 
and using Stirling's formula for the factorial,17 one has 
very nearly 

g»(«, tf ma*) = QoL(n+ l)/(27m52)]1/2. (C2) 

The position and amplitude of the peak, two quantities 
which do depend on the shape of the trial function, are 
exhibited in Eqs. (CI), (C2). The fact that for n>2, 
they are very weakly dependent on n is an example of 
the way the quantitative information acts to restrict the 
variation of the trial function. 

The considerations leading to the choice of n are the 
following: the trial function (2.20) has been adjusted so 
as to approximate the collision density q(z,U). Hence, 
the Laplace transform of the trial function should ap
proximate the Laplace transform of the collision density, 
qs(z). If the approximation were exact, one would have 

qs(z)= [ qn(z,U)e-°udU 
Jo 

= [ a« ! / ( 7 +*)" + 1 ] exp(-sUo), (C3) 

and equality for all values of s. The approximation is 
not exact however and thus (C3) is not true for all 
values of s. (Even so, when both sides of this equation 
are expanded as power series in s, there is agreement up 
to terms in s2 because of the choice of a, £/0, and 7.) 
We may express a, 7, and U0 in terms of ()0, U, and 82 

using Eq. (2.22). Then a slight rearrangement of (C3) 
gives 

ZQo(z)/q.(z)lexp(-sU) 

= { l + ^ 2 / ( ^ + l ) ] 1 / 2 } n + 1 ^ - s C ( n + 1 ) 6 2 l l / 2 . (C4) 

The only value of 5 important to the inversion of (C3) 
is evidently s=— 7. One would prefer to choose n so 
that (C4) is indeed an equality for this single value of s. 
This is not possible, but by choosing another nearby 
value of s, namely 

s= -y/(n+l)i/*= - 1 / 5 , (C5) 
17 The formula states that limn-**, gn— (2TT)~112. However, for 

n>2, the difference between gn and its limiting value is already 
less than 4%. See, for example, Ref. 8, p. 443. 

it is possible to choose n so as to satisfy (C4) at this one 
value of s. Doing this will cause the transform and its 
approximant not only to agree at the origin up to terms 
of order s2, but to agree again at a value of .? near the 
region which should be important to the process of 
inverting the transform. 

To achieve this, one may insert (C5) into (C4) to 
obtain 

KoW/g-i/a(*)] exp(L7$) = fn, (C6a) 

/ „ = [ l - ( M - l ) - 1 / 2 ] n + 1 exp(H- l ) 1 / 2 . (C6b) 

The left side of (C6a) is an easily calculated function of 
z. The new symbol ^_i/g indicates that qs(z) is to be 
calculated with s set equal to —1/8. The right side of 
(C6a) is a function of n which may be tabulated once 
and for all for integer values of n (see Table V). The 

TABLE V. The function /„ . 

n 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

In 

0.3528 
0.4267 
0.4618 
0.4829 
0.4473 

0.5079 
0.5160 
0.5225 
0.5278 
0.5323 

n 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

/» 

0.5361 
0.5394 
0.5423 
0.5449 
0.5472 

0.5493 
0.5511 
0.5529 
0.5544 
0.5559 

value of n to be used in (2.20), (2.22) and (CI), (C2) is 
that integer which best satisfies Eq. (C6). 

Although we do not know how to invert the exact 
qs(z) we do know how to invert the corresponding func
tion, namely Eq. (B5), in the age approximation. The 
inversion is 

lq(x,U) = [3/(4<jrco8rU)J/2 

X e x p { - [ ( 3 c 0 ^ 2 / 4 ^ ) + ( l - c o ) ^ A o ^ ] } (C7) 

in full agreement with the results of BMM. This inver
sion appears as the solid curve of Fig. 1 which corre
sponds to the choice 2=22, c0=0.76, Sr= 0.063 eV. The 
points lying just above or below the curve were calcu
lated using the trial function method as described in 
Sec. II , and the age approximation for computing the 
moments. 


